Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

# Supramolecular structures of 2-cyano-3-dimethylaminoN -(4-methylphenyl)acrylamide and 2-cyano-3-dimethylaminoN -(2-methoxyphenyl)acrylamide 

M. Yogavel, ${ }^{\text {a }}$ P. G. Aravindan, ${ }^{\text {a }}$ D. Velmurugan, ${ }^{\text {a }}{ }^{*}$ K. Sekar, ${ }^{\text {b }}$ S. Selvi, ${ }^{\text {c }}$ P. T. Perumal, ${ }^{\text {c }}$ S. Shanmuga Sundara Raj ${ }^{\text {d }}$ and H.-K. Fun ${ }^{\text {e }}$<br>${ }^{\text {a }}$ Department of Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, ${ }^{\mathbf{b}}$ Bioinformatics Center, Supercomputer Education and Research Center, Indian Institute of Science, Bangalore 560 012, India, ${ }^{\text {c Organic }}$ Chemistry Division, Central Leather Research Institute, Adyar, Chennai 600 020, India, ${ }^{\text {d B31 }} 3121$ Medical Center North, Department of Medicine-Nephrology, Nashville, USA, and ${ }^{\mathbf{e} X \text {-ray Crystallography Unit, School of Physics, Universiti Sains }}$ Malaysia, 11800 USM, Penang, Malaysia<br>Correspondence e-mail: d_velu@yahoo.com

Received 16 January 2003
Accepted 6 May 2003
Online 30 June 2003
In the title compounds, $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}$, (I), and $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{2}$, (II), the dihedral angles between the planes of the phenyl ring and the amide group are 4.1 (1) and $20.7(1)^{\circ}$, respectively. The molecules adopt a fully extended conformation, aided by intramolecular interactions. The molecular structures of (I) and (II) display different crystal packing and hydrogenbonding networks.

## Comment

As part of our study of conformational analysis, crystallographic work on N -aromatic amide derivatives has been undertaken. These derivatives are analogs of the active metabolites of the immunosuppressive drug leflunomide, which are known to act, in part, by inhibiting the tyrosine

kinase epidermal growth-factor receptor (EGFR; Mattar et al., 1993). EGFR is a membrane-associated tyrosine kinase, which serves as an endogenous negative regulator of apoptosis in
breast cancer cells (Uckun et al., 1998). The present study reports the structures of two N -acrylamide compounds, (I) and (II) (Figs. 1 and 2), in order to examine the effects of substituents on the hydrogen-bonding systems and on the crystal structures.

The dihedral angle between the planes of the phenyl rings and the amide groups are 4.1 (1) and 20.7 (1) ${ }^{\circ}$ for (I) and (II), respectively. In both compounds, the geometry of the amide group is comparable to that of similar groups in acetanilides (Haisa et al., 1977). The C10-C11 and $\mathrm{C} 11-\mathrm{N} 12$ bond lengths (Tables 1 and 3) agree with expected Csp2 - Csp [1.431 (14) $\AA$ ] and $\mathrm{Csp}-\mathrm{N}[1.136(10) \AA]$ bond lengths, respectively (Allen et al., 1987). Similar observations have been noted for the crystal structures of the leflunomide metabolite analogs (Ghosh et al., 1999; Ghosh \& Uckun, 1999) and for an acrylamide derivative (Ompraba et al., 2003). In (II), the $\mathrm{C} 2-\mathrm{O} 17-\mathrm{C} 18$ angle $\left[118.3(1)^{\circ}\right]$ is close to that expected for $s p^{2}$ hybridization of atom O17. The distortion and enlargement of the $\mathrm{C} 6-\mathrm{C} 1-\mathrm{N} 7, \mathrm{C} 1-\mathrm{N} 7-\mathrm{C} 8$ and $\mathrm{N} 7-$ $\mathrm{C} 8-\mathrm{O} 9$ angles from the trigonal value $\left(120^{\circ}\right)$ are due to intramolecular $\mathrm{C} 6-\mathrm{H} 6 \cdots \mathrm{O} 9$ hydrogen bonds (Tables 2 and 4). In both (I) and (II), the cyanoacrylamide side chain is planar, with $\pi$-conjugation along the chain causing variations of the bond distances with respect to localized double and single bonds. The $\mathrm{C} 1-\mathrm{N} 7-\mathrm{C} 8-\mathrm{C} 10$ torsion angle does not differ significantly between (I) and (II) $[-178.9$ (1) and 176.6 (1) ${ }^{\circ}$, respectively], whereas the $\mathrm{C} 6-\mathrm{C} 1-\mathrm{N} 7-\mathrm{C} 8$ angle differs substantially $\left[-3.7(3)\right.$ and $-20.2(2)^{\circ}$, respectively], indicating that the large twist around the $\mathrm{C} 1-\mathrm{N} 7$ bond in (II) is due to an intramolecular $\mathrm{N} 7-\mathrm{H} 7 \cdots \mathrm{O} 17$ hydrogen bond. This hydrogen bond determines the orientation of the


Figure 1
The molecular structure of (I), showing displacement ellipsoids at the $35 \%$ probability level.


Figure 2
The molecular structure of (II), showing displacement ellipsoids at the $35 \%$ probability level.


Figure 3
A view of the discrete hexamer formed by the molecules of (I). [Symmetry codes: (i) $x, \frac{1}{2}-y, \frac{1}{2}+z$; (ii) $x, \frac{1}{2}-y,-\frac{1}{2}+z$; (iii) $2-x, \frac{1}{2}+y$, $\frac{1}{2}-z$; (iv) $2-x, \frac{1}{2}+y,-\frac{1}{2}-z$; (v) $2-x, 1-y,-z$.]
methoxy group $\left[\mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 17-\mathrm{C} 18=179.5(1)^{\circ}\right]$, which is coplanar with the phenyl ring.

The supramolecular structures of (I) and (II) are completely different. In (I), the symmetry-related molecules are linked together head-to-tail via $\mathrm{N} 7-\mathrm{H} 7 \cdots \mathrm{~N} 12(2-x, \quad-y, \quad z)$ hydrogen bonds to form a dimer comprising an $R_{2}^{2}(12)$ ring (Bernstein et al., 1995). The dimers at $\left(x, \frac{1}{2}-y, \frac{1}{2}+z\right)$ and $\left(2-x, \frac{1}{2}+y, \frac{1}{2}-z\right)$ [center of symmetry at $\left.\left(1, \frac{1}{2}, \frac{1}{2}\right)\right]$, and $(x$, $\left.\frac{1}{2}-y,-\frac{1}{2}+z\right)$ and $\left(2-x, \frac{1}{2}+y,-\frac{1}{2}-z\right)$ [center of symmetry at $\left.\left(1, \frac{1}{2},-\frac{1}{2}\right)\right]$, are further linked by symmetry-related C $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, linking atom O 9 at $(x, y, z)$ with atom $\mathrm{H} 15 A$ at $\left(x, \frac{1}{2}-y, \frac{1}{2}+z\right)$, atom $\mathrm{H} 15 A$ at $(x, y, z)$ with atom O 9 at $\left(x, \frac{1}{2}-y,-\frac{1}{2}+z\right)$, atom O 9 at $(2-x, 1-y,-z)$ with atom $\mathrm{H} 15 A$ at $\left(2-x, \frac{1}{2}+y,-\frac{1}{2}-z\right)$, and atom H15A at $(2-x$, $1-y,-z)$ with atom O 9 at $\left(2-x, \frac{1}{2}+y, \frac{1}{2}-z\right)$, respectively, thus forming an $R_{6}^{6}(36)$ ring. Hence, a discrete hexamer is formed with the center of symmetry at $\left(1, \frac{1}{2}, 0\right)$ (Fig. 3). The result is a two-dimensional layer, which runs along the $b c$ plane (Fig. 4). In (II), an intramolecular N7-H7…O17 hydrogen bond forms a five-membered ring. A $C(8)$ motif is formed via a $\mathrm{C} 4-\mathrm{H} 4 \cdots \mathrm{O} 9\left(1-x, \frac{1}{2}+y, \frac{3}{2}-z\right)$ hydrogen


Figure 4
The molecular packing of (I), viewed along the $c$ axis.


Figure 5
A view of the crystal structure of (II), viewed along the $a$ axis, showing two antiparallel $C(8)$ chains. [Symmetry codes: (vi) $1-x, \frac{1}{2}+y, \frac{3}{2}-z$; (vii) $1-x,-\frac{1}{2}+y, \frac{3}{2}-z$.]
bond, creating a chain that runs parallel to the $a b$ plane. Two such antiparallel chains are shown in Fig. 5. A $\mathrm{C}-\mathrm{H} \cdots \pi$ interaction is also observed in (II) (Table 4). The H7…C11 distances, viz. $2.34 \AA$ in (I) and $2.28 \AA$ in (II), are short as a result of the positive charge on atom H 7 and the negative charge on atom C11.

## Experimental

Substituted $N$-arylcyanoacetamide ( 0.005 mol ) was dissolved in dimethylformamide ( 6 ml ) and kept under ice-cold conditions. To this solution, $\mathrm{POCl}_{3}(1.4 \mathrm{ml}, 0.015 \mathrm{~mol})$ was added slowly with stirring. The reaction mixture was allowed to reach room temperature and was stirred for $3-4 \mathrm{~h}$. The residue was then poured on to crushed ice and neutralized with $\mathrm{NaOH}(10 \%)$, and the crude product was filtered, washed with water and dried. Finally, the compound was purified by recrystallization using an ethyl acetate-petroleum ether mixture [m.p. 445 and 425 K for (I) and (II), respectively].

## Compound (I)

## Crystal data

$\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}$
$M_{r}=229.28$
Monoclinic, $P 2_{{ }^{1}} / c$
$a=7.5846$ (3) $\AA$ 。
$b=22.4477(10) \AA$
$c=7.5989$ (3) A
$\beta=106.306$ (1) ${ }^{\circ}$
$V=1241.72(9) \AA^{3}$
$Z=4$
$D_{x}=1.226 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 4951 reflections
$\theta=1.8-28.3^{\circ}$
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Slab, pale yellow
$0.48 \times 0.40 \times 0.16 \mathrm{~mm}$

## Data collection

Siemens SMART CCD areadetector diffractometer $\omega$ scans
8417 measured reflections
3022 independent reflections
2242 reflections with $I>2 \sigma(I)$

$$
\begin{aligned}
& R_{\text {int }}=0.037 \\
& \theta_{\max }=28.3^{\circ} \\
& h=-10 \rightarrow 8 \\
& k=-29 \rightarrow 27 \\
& l=-10 \rightarrow 8
\end{aligned}
$$

Table 1
Selected geometric parameters $\left({ }^{\circ},{ }^{\circ}\right)$ for (I).

| $\mathrm{C} 1-\mathrm{N} 7$ | $1.415(2)$ | $\mathrm{C} 11-\mathrm{N} 12$ | $1.148(2)$ |
| :--- | ---: | :--- | ---: |
| $\mathrm{N} 7-\mathrm{C} 8$ | $1.364(2)$ | $\mathrm{C} 13-\mathrm{N} 14$ | $1.320(2)$ |
| $\mathrm{C} 8-\mathrm{O} 9$ | $1.228(2)$ |  |  |
|  |  |  |  |
| C6-C1-N7 | $124.6(2)$ | $\mathrm{N} 14-\mathrm{C} 13-\mathrm{C} 10$ | $132.0(2)$ |
| $\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 7$ | $117.0(1)$ | $\mathrm{C} 13-\mathrm{N} 14-\mathrm{C} 16$ | $124.1(2)$ |
| $\mathrm{C} 8-\mathrm{N} 7-\mathrm{C} 1$ | $128.4(1)$ | $\mathrm{C} 13-\mathrm{N} 14-\mathrm{C} 15$ | $120.4(2)$ |
| $\mathrm{O} 9-\mathrm{C} 8-\mathrm{N} 7$ | $122.5(2)$ | $\mathrm{C} 16-\mathrm{N} 14-\mathrm{C} 15$ | $115.5(2)$ |
|  |  |  |  |
| $\mathrm{C} 6-\mathrm{C} 1-\mathrm{N} 7-\mathrm{C} 8$ | $-3.7(3)$ | $\mathrm{N} 7-\mathrm{C} 8-\mathrm{C} 10-\mathrm{C} 13$ | $-170.2(1)$ |
| $\mathrm{C} 1-\mathrm{N} 7-\mathrm{C} 8-\mathrm{C} 10$ | $-178.9(1)$ | $\mathrm{C} 11-\mathrm{C} 10-\mathrm{C} 13-\mathrm{N} 14$ | $0.1(3)$ |

Table 2
Hydrogen-bonding geometry ( $\AA^{\circ}{ }^{\circ}$ ) for (I).

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| C6-H6 $\cdots$ O9 | 0.93 | 2.27 | $2.864(2)$ | 121 |
| C13-H13 $\cdots$ O9 | 0.93 | 2.34 | $2.748(2)$ | 106 |
| N7-H7 $\cdots$ N1ii | 0.86 | 2.50 | $3.228(2)$ | 143 |
| C15-H15A $\cdots \mathrm{O}^{\text {iii }}$ | 0.96 | 2.57 | $3.360(2)$ | 139 |

Symmetry codes: (ii) $x, \frac{1}{2}-y,-\frac{1}{2}+z$; (viii) $2-x,-y,-z$.

## Refinement

Refinement on $F^{2}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.057$
$w R\left(F^{2}\right)=0.169$
$S=1.04$
3022 reflections
157 parameters
H -atom parameters constrained

## Compound (II)

## Crystal data

$\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{2}$
$M_{r}=245.28$
Monoclinic, $P 2_{1} / c$
$a=7.5141(3) \AA$
$b=12.7580(6) \AA$
$c=13.9381(6) \AA$
$\beta=92.795(1)^{\circ}$
$V=1334.58(10) \AA^{3}$
$Z=4$

$$
\begin{gathered}
w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0849 P)^{2}\right. \\
\quad+0.2309 P] \\
\text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }<0.001 \\
\Delta \rho_{\max }=0.19 \mathrm{e}^{-3} \AA^{-3} \\
\Delta \rho_{\min }=-0.15 \mathrm{e}^{-3}
\end{gathered}
$$

Data collection
Siemens SMART CCD areadetector diffractometer $\omega$ scans
9025 measured reflections
3278 independent reflections
2425 reflections with $I>2 \sigma(I)$

## Refinement

Refinement on $F^{2}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.048$
$w R\left(F^{2}\right)=0.152$
$S=1.05$
3278 reflections
166 parameters
H -atom parameters constrained
$D_{x}=1.221 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 5915
$\quad$ reflections
$\theta=2.2-28.3^{\circ}$
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=293(2) \mathrm{K}$
Block, pale yellow
$0.48 \times 0.46 \times 0.42 \mathrm{~mm}$

$R_{\text {int }}=0.041$
$\theta_{\max }=28.3^{\circ}$
$h=-9 \rightarrow 9$
$k=-16 \rightarrow 16$
$l=-12 \rightarrow 18$

$$
\begin{gathered}
w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0825 P)^{2}\right. \\
\quad+0.0796 P] \\
\text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }<0.001 \\
\Delta \rho_{\max }=0.19 \mathrm{e}^{-3} \AA^{-3} \\
\Delta \rho_{\min }=-0.14 \mathrm{e}^{-3}
\end{gathered}
$$

Table 3
Selected geometric parameters ( $\AA^{\circ},^{\circ}$ ) for (II).

| C1-N7 | $1.407(2)$ | $\mathrm{C} 11-\mathrm{N} 12$ | $1.147(2)$ |
| :--- | :--- | :--- | ---: |
| $\mathrm{N} 7-\mathrm{C} 8$ | $1.368(2)$ | $\mathrm{C} 13-\mathrm{N} 14$ | $1.316(2)$ |
| $\mathrm{C} 8-\mathrm{O} 9$ | $1.228(2)$ |  |  |
|  |  |  |  |
| C6-C1-N7 | $124.6(1)$ | $\mathrm{N} 14-\mathrm{C} 13-\mathrm{C} 10$ | $130.8(1)$ |
| $\mathrm{N} 7-\mathrm{C} 1-\mathrm{C} 2$ | $115.7(1)$ | $\mathrm{C} 13-\mathrm{N} 14-\mathrm{C} 16$ | $123.8(1)$ |
| $\mathrm{C} 8-\mathrm{N} 7-\mathrm{C} 1$ | $128.4(1)$ | $\mathrm{C} 13-\mathrm{N} 14-\mathrm{C} 15$ | $120.1(1)$ |
| $\mathrm{O} 9-\mathrm{C} 8-\mathrm{N} 7$ | $122.2(1)$ | $\mathrm{C} 16-\mathrm{N} 14-\mathrm{C} 15$ | $116.1(1)$ |
|  |  |  |  |
| C6-C1-N7-C8 | $-20.2(2)$ | $\mathrm{C} 11-\mathrm{C} 10-\mathrm{C} 13-\mathrm{N} 14$ | $3.4(2)$ |
| $\mathrm{C} 1-\mathrm{N} 7-\mathrm{C} 8-\mathrm{C} 10$ | $176.6(1)$ | $\mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 17-\mathrm{C} 18$ | $179.5(1)$ |
| N7-C8-C10-C13 | $177.3(1)$ |  |  |

Table 4
Hydrogen-bonding geometry ( $\AA,^{\circ}$ ) for (II).
$C g$ is the centroid of the $\mathrm{C} 1-\mathrm{C} 6$ ring.

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots \mathrm{A}$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :---: | :---: | :---: | :---: | :---: |
| C6-H6 . O 9 | 0.93 | 2.38 | 2.910 (2) | 116 |
| C13-H13 . ${ }^{\text {O }} 9$ | 0.93 | 2.36 | 2.756 (2) | 106 |
| N7-H7 . . O17 | 0.86 | 2.22 | 2.596 (1) | 106 |
| $\mathrm{C} 4-\mathrm{H} 4 \cdots \mathrm{O} 9^{\text {vi }}$ | 0.93 | 2.57 | 3.452 (2) | 158 |
| C18-H18C $\cdots C^{\text {dix }}$ | 0.96 | 2.75 | 3.551 (1) | 141 |

Symmetry codes: (vi) $1-x, \frac{1}{2}+y, \frac{3}{2}-z$; (ix) $1-x, 1-y, 1-z$.

For both compounds, data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; structure solution: SHELXS97 (Sheldrick, 1997); structure refinement: SHELXL97 (Sheldrick, 1997); molecular graphics: ZORTEP (Zsolnai, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1995).
Financial support from the University Grants Commission (UGC) and the Department of Science and Technology (DST), India, are gratefully acknowledged.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: NA1594). Services for accessing these data are described at the back of the journal.

## References

Allen, F. H., Kennard, O., Watson, D., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Ghosh, S. \& Uckun, F. M. (1999). Acta Cryst. C55, 1364-1365.
Ghosh, S., Zhen, Y. \& Uckun, F. M. (1999). Acta Cryst. C55, 2117-2122.
Haisa, M., Kashino, S., Matsuzaki, Y., Kawai, R. \& Kunitomi, K. (1977). Acta Cryst. B33, 2449-2454.
Mattar, T., Kochhar, K., Bartlett, R., Bremer, E. G. \& Finnegan, A. (1993). FEBS Lett. 334, 161-164.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Ompraba, Aysha, A., Yogavel, M., Velmurugan, D., Selvi, S., Perumal, P. T., Shanmuga Sundara Raj, S., Fun, H.-K. \& Rafi, Z. A. (2003). Acta Cryst. E59, o353-o355.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray instruments Inc., Madison, Wisconsin, USA.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Uckun, F. M., Jun, X., Narla, R. K., Zeren, T., Venkatachalam, T., Waddick, K., Rostostev, A. \& Myers, D. E. (1998). Clin. Cancer Res. 4, 901-912.
Zsolnai, L. (1997). ZORTEP. University of Heidelberg, Germany.

